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Abstract 

Behavioral dynamics of living species is characterized by additonal non- 
Newtonian properties which are  not included in the laws of Newtonian or 
statistical mechanics. These properties follow from a priviledged ability of 
living systems to process information, namely, to generate a force in 
response to an external cue.  In this paper “free-will-based” forces will be 
incorporated into the neurodynamical formalism. 

1. Introduction 

Recent advances in nonlinear dynamics demonstrate a remarkable complexity of 
patterns outside of equilibrium which are derived from simple basic laws of physics. 
There has been identified a class of  mathematical models providing a variety of such 
patterns in the form of static, periodic or chaotic attractors. These models appeared to be 
so general that they predict not only physical, but also biological, economical and social 
patterns of behavior.  Such a phenomenological reductionism may suggest that, on the 
dynamical level of description, there is no difference between a solar system, a swarm of 
insects,  and a stock market. However, this conclusion is wrong for a very simple reason: 
even primitive living species possess additional non-Newtonian properties which are not 
included in the laws of Newtonian or statistical mechanics. These properties follow from 
a privileged ability of living species to process information, namely, to generate a force in 
response  to an external cue.  In this paper we will incorporate these “free-will-based” 
forces into the mathematical formalism of neurodynamics. 

2. Dynamical  Model 

In contradistinction to physical systems, a biological system, from the viewpoint of 
nonlinear dynamics,  can be considered as a multi-body system (with “bodies” represented 
by cells) which is interconnected via information flows. Since these flows  as well as 
responses to them may  be distorted,  delayed,  or incomplete, the motion of each cell 
becomes stochastic, and it can be simulated by a controlled random walk.  This random 
walk is caused not  by  an external noise (as in the case of a physical particle) but rather by 
an internal effort (a “free will”) triggered by  the signaling system. Physically it is 
represented by an ordered  sequence of runs, pausing and tumples. 

One of the main challenges in modeling living systems is to distinguish a random 
walk of physical origin (for instance, Brownian motions) from those of biological origin 
and that will constitute the starting point of the proposed approach. As conjectured in (‘‘I the 
biological random walk must be nonlinear. Indeed, any stochastic Markov process can 
be described by linear Fokker-Planck equation (or its discretized version) only that types of 
processes has been observed in the inanimate world. However, all such  processes always 
converge  to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and 
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higher entropy. At the same time, the evolution of living systems  is directed toward a 
higher level of complexity if complexity is associated with a number of structural 
variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into 
the random walk; then the probability evolution will  attain  the features of the Burgers 
equation: the formation and dissipation of shock waves initiated  by small shallow wave 
disturbances. As a result, the evolution never “dies”:  it produces new different 
configurations which are accompanied by increase or decrease of entropy (the decrease 
takes place during formation of shock  waves, the increase-during their dissipation).  In 
other  words,  the evolution can be directed “against the second law of thermodynamics by 
forming patterns outside of equilibrium. 

In order to elucidate both the physical and the biological aspects of the proposed 
model, let us start with a one-dimensional random walk: 

x,,, = x,  + h Sgn[ R(f1) + p ]  h = Const, z = Const, (1) 

where h and z are the space (alongx) and time steps respectively; R(k1) is a random 
function taking values from -1 to 1 with equal probability, p is a control parameter while 
IpI 5 1/2 . (Physical implementations of this model were discussed [ 11) 

Eq. (1) describes motion in  actual physical space. But since this motion is 
irregular, it is more convenient to turn to the probability space: 

where f ( x , t )  is the probability that the moving particle occupies the point x at the instant t, 
and the transition probability 

1 
2 

p = - + p , O I p I l  

It is well known that if the  system interacts with the external world, i.e., 

p = p ( x ) ,  and therefore, p = p ( x )  

then the solution to Eq. (2) subject to the  reflecting boundary conditions converges to a 
stable stochastic attractor. However, if 

,LL = p ( f ) ,  and therefore, p = p ( f )  , (4) 

Eq. (2) becomes nonlinear, and Eq. (1) is coupled with Eq. (2) via the feedback (4). 
From the physical viewpoint, the system (l), (2) can be compared with the 

Langevin equation which is coupled with the corresponding Fokker-Planck equation such 
that the stochastic force is fully defined by the current probability distributions, while the 



diffusion coefficient is fully defined by the stochastic force. The process described by this 
system is Markovian since future still depends only upon present, but not past.  However, 
now present includes not only values of the state variable, but also its probability 
distribution, and that leads to nonlinear evolution of random walk. 

From the mathematical viewpoint,  Eq. (1) simulates probabilities while Eq. (2) 
manipulates by their values. The connection between these equations is the following: if 
Eq. (1) is run independently many  times and a statistical analysis of these solutions  is 
performed, then the calculated probability will evolve according to Eq. (2). 

From the biological viewpoint, Eqs. (1) and (2) represent the same subject: a living 
specie. Eq. (1) simulates its motor dynamics, i.e., actual  motion in physical space, while 
Eq. (2) can be associated with mental dynamics describing information flows in the 
probability space. 

Such an interpretation [‘I was evoked by the concept of reflection in psychology. 
Reflection is traditionally understood as the human ability  to take the position of an 
observer in relation to one’s own thoughts. In other words, the reflection is a self- 
awareness via the interaction with the  “image  of  the self.” In terms of  the 
phenomenological formalism proposed above, Eq. (2) represents the probabilistic “image” 
of the  dynamical  system (1). If this system “possesses” its own image, then it can predict, 
for  instance, future expected values of its parameters, and, by interacting with the image, 
change the expectations if they are not consistent with the objective. In this context, Eq (1) 
simulates acting, and Eq (2) simulates “thinking.” Their interaction can be implemented by 
incorporating probabilities, its functions and functionals into the control parameter p (see 
Eq. (4)). 

3. Emerging  Self-organization 

We will start the analysis of the coupled motor-mental dynamics with Eqs.  (1) and 

p = ,sin2(@ + P) ,  p = p - -, a,P = Const, f = f ( x , t )  

(2) where 
1 
2 (5) 

i.e. 

X,+, = X, + h Sgn R(f1) + Sin2(@ + P )  + - 
2 ‘I 

Here a and P are constant weights 

In order to illustrate the fundamental nonlinear effects, we will analyze the behavior 
of special critical points by assuming that 

5n 7T 
a=-, P = - -  and 12 6 



Then the solution to Eq. (7) will consist of two waves starting from the points 
x = -& and x = l , traveling toward each other with the constant speed v = h / z ,  and 
transporting the values f j ’ )  and f j 2 ) ,  respectively, i.e., 

where n  is the number of time-steps. 

At n = l /h ,  the waves confluence into one solitary wave at x = 0:  

1 a t  x=O 
0 otherwise 

! 
h 

at t=nZ=“Z 

This  process represents a discrete version of formation and confluence of shock waves, 
and it is characterized by a decrease of the Shannon entropy from 

H ( 0 )  = --!og, I - 1 4  --log, - 4 > 0 to H(nz)  = 0 
5 5 5  5 

However, the solitary wave (10) is not stationary. Indeed, as follows  from  Eq. (7), the 
solution at t = (n  + l)z splits into two equal values: 

112 at x = & f h  
&+l)s  = { 0 otherwise (1 2) 

The process (12) can be identified as a discrete version of diffusion during which the 
entropy increases again from 

H(nz)  = 0 to H[(n  + l ) z ]  = -.eo& - I = 1 
2 



The further evolutionary steps t 2 (n  + 2)2 will include both diffusion and wave  effects, 
and therefore, the solution will endlessly display more and more sophisticated patterns of 
behavior in  the probability space. The corresponding solutions to Eq. (6) represent 
samples of the stochastic process (7) in the form of non-linear random walks in actual 
physical space. 

Thus, the solutions to coupled motor-mental dynamics simulate emerging self- 
organization which can start spontaneously. At this level of description, such an effect is 
triggered by instability rather than by a specific objective. In other words, the model 
represents a “brainless” life. However, it serves well to the global objective of each living 
system: the survival.  Indeed, it is a well established fact in biology that marginal 
instability makes behaviors of living system more flexible and therefore, more adaptable to 
changing environment. 
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